377 Combination Sum IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
分析& 代码
是看到discuss里面的解法,因为用backtracking实在太多可能性了
思路是和https://leetcode.com/problems/climbing-stairs/
在climbing stairs里面假如有n个台阶,每次可以跨一个台阶或者两个台阶,那么它的状态转移方程是res[i] = res[i - 1] + res[i - 2],初始化是res[0] = 1; res[1] = 1;
但是在本题中,每次不再只是可以跨一步或者两步了,每次可以跨nums数组里面的任意数字的步,而且终点不是n了,终点是target数。所以状态转移方程是
foreach possible number in nums: res[i] += res[i - each] (i - each >= 0)
而且其中等于0也没有关系我们把res[0]初始化成1就好了。
public int combinationSum4(int[] nums, int target) {
if(nums.length == 0) {
return 0;
}
Arrays.sort(nums);
int[] res = new int[target + 1];
res[0] = 1;
for(int i = 1; i <= target; i++) {
for(int num: nums) {
if(i - num >= 0) {
res[i] += res[i - num];
} else {
break;
}
}
}
return res[target];
}